

GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S1

Paper D MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S1 Paper D – Marking Guide

www.mymathscioud.com

B2

B2

	(b)	e.g. with small n weak evidence of +ve correlation, with larger n stronger evidence of +ve correlation	B2	(6)
2.	(a)	f. d. of $30-34 = \frac{32}{5} = 6.4$; $6.4 \rightarrow 19.2 \text{ cm} \therefore 1 \rightarrow 3 \text{ cm}$	M1	
		f. d. of $35-39 = \frac{28}{5} = 5.6$; : height = $3 \times 5.6 = 16.8$ cm	M1 A1	
	<i>(b)</i>	height 2.7 cm : f. d. = $\frac{2.7}{3} = 0.9$	M1	
		$\therefore \frac{n}{20} = 0.9; n = 18$	M1 A1	(6)
3.	(a)	$\frac{1}{4} = P(B) \times \frac{2}{3}$: $P(B) = \frac{1}{4} \div \frac{2}{3} = \frac{3}{8}$	M2 A1	
	<i>(b)</i>	$\frac{7}{12} + \frac{3}{8} - \frac{1}{4} = \frac{17}{24}$	M2 A1	
	(c)	$P(B A') = \frac{P(B \cap A')}{P(A')} = \frac{\frac{3}{8} - \frac{1}{4}}{1 - \frac{7}{12}} = \frac{3}{10}$	M2 A1	(9)
4.	(a)	$S_{xy} = 3871 - \frac{57 \times 2222}{20} = -2461.7$	M1	
		$S_{xx} = 401 - \frac{57^2}{20} = 238.55$	B2 M1 M1 A1 M1 A1 M1 A1 M2 A1 M2 A1 M2 A1 M2 A1 M2 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1 A1	
		$b = \frac{-2461.7}{238.55} = -10.3194$	M1 A1	
		$a = \frac{2222}{20} - \left(-10.3194 \times \frac{57}{20}\right) = 140.5104$	M1 A1	
		y = 140.5104 - 10.3194x	A1	
		P - 300 = 140.5104 - 10.3194(T - 20)	M1	
		P = 646.9 - 10.3T	A1	
	<i>(b)</i>	460 = 646.9 - 10.3T	M1	
		$T = \frac{646.9 - 460}{10.3} = 18.1$: 18°C (nearest degree)	M1 A1	(12)

			WWW. MYM	
5.	(a)	$2k + 3k + 4k + 5k + 6k = 1; \ k = \frac{1}{20}$	M1 A1	S.
	(b)	$\sum x \mathbf{P}(x) = \frac{1}{20} \left(4 + 9 + 16 + 25 + 36 \right) = \frac{9}{2}$	M2 A1	JJ.COM
	(c)	$= P(X > \frac{9}{2}) = \frac{5}{20} + \frac{6}{20} = \frac{11}{20}$	M1 A1	
	(d)	$(2 \times \frac{9}{2}) - 5 = 4$	M1 A1	
	(e)	$E(X^{2}) = \sum x^{2}P(x) = \frac{1}{20} (8 + 27 + 64 + 125 + 216) = 22$ Var(X) = 22 - $(\frac{9}{2})^{2} = \frac{7}{4}$	M1 A1 M1 A1 (13)	
6.	(a)	P(X>2) = 0.75; P(Z > $\frac{2-\mu}{\sigma}$) = 0.75	M2	
		$\frac{2-\mu}{\sigma} = -0.67; \ 2-\mu = -0.67\sigma$	A1	
		$P(X > 6) = 0.1; P(Z > \frac{6-\mu}{\sigma}) = 0.1$	M2	
		$\frac{6-\mu}{\sigma} = 1.2816; \ 6-\mu = 1.2816\sigma$ solve simul. giving $\mu = 3.3732, \ \sigma = 2.0496$; so $\mu = 3.37, \ \sigma = 2.05$	A1 M1 A2	
		1 2 2722		

(b)
$$P(X < 1) = P(Z < \frac{1 - 3.3732}{2.0496}) = P(Z < 1.16) = 0.1230 \therefore 12.3\%$$
 M2 A1

(c) e.g. large discrepancy between predicted & actual
$$\therefore$$
 not v. suitable B2 (14)

7.	(a)	Number of points	(2 4 means 24 points)	Totals		
		1	2	(1)		
		1	5 5 7 8 8 9 9	(7)		
		2	1 1 3 3 4 4 4 4	(8)		
		2	5689	(4)		
		3	0 2 4	(3)		
		3	679	(3)	B3	
		4	0 1 3	(3)		
		4	5	(1)		
	<i>(b)</i>	$Q_1 = 19$			A1	
		$Q_2 = 24$			A1	
		$Q_3 = 34 + \frac{1}{4}(36 - 3)$	M1 A1			
	(c)				В3	
		10 20	30 40	50		
	(d)				B2	
		10 20	30 40	50		
	(e)	e.g. Tahira more p Jane sometime	oints on av.; Tahira more s v. high i.e. +ve skew w	consistent (smaller IQR); hereas Tahira symm.	В3	(15)

Total (75)

Performance Record – S1 Paper D

www.mymathscioud.com

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	scatter diagrams, pmcc	histogram	probability	regression with coding	discrete r. v.	normal dist., modelling	stem & leaf, quartiles, boxplots	
Marks	6	6	9	12	13	14	15	75
Student								